Anti-Pollution Matrix
- 1. Categories of Active Ingredients and Product Classes
- 2. Pollutants
- 3. Damage
- 4. Methods
- Method List
- In vitro HPLC
- Immunohistochemistry (ICH, ICC)
- Laser scanning microscopy (LSM)
- Raman spectroscopy
- Two-photon fluorescence microscopy (2PM) / FLIM
- ESR spectroscopy
- In vitro ELISA assays / suction blister fluid
- Suction Blister Model
- Cigarette Smoke Model
- Lipid peroxidation after smoke application
- Analysis of intercellular lipid lamellae after smoke application
- Differential tape stripping
- Microdialysis
- Method List
Laser scanning microscopy (LSM)
Anti-Pollution Matrix > Methods > Method list
> Laser scanning microscopy (LSM)
Explanation
Laser scanning microscopy (LSM) can be used when the particles and/ or agent of interest is fluorescent or labeled by a fluorescent agent.
The LSM technology can be applied ex vivo to a biopsy or to cryosections or in vivo to visualize the penetration of substances / active agents / particulate matter. In addition, penetration depths into hair follicles can be estimated. The lateral resolution of the method is 1 to 5 µm. Patzelt et al. [1], for example, showed that nanoparticles with a size of approx. 650 nm penetrate deepest into the hair follicle.
Proof
- follicular penetration, depth of penetration and distribution in the skin layers and decontamination of the skin and hair [2, 3]
- penetration of active ingredients/substances into the skin [4]
Suitability
- investigation of the penetration of e.g. particles into the skin [3]
- decontamination tests (anti-pollution)
Literature
[1] A. Patzelt, H. Richter, F. Knorr, U. Schafer, C.M. Lehr, L. Dahne, W. Sterry, J. Lademann, Selective follicular targeting by modification of the particle sizes, J Control Release, 150 (2011) 45-48, DOI: 10.1016/j.jconrel.2010.11.015
[2] J. Lademann, H. Richter, A. Patzelt, M.C. Meinke, I. Gross, S. Grether-Beck, J. Krutmann, L. Frazier, M.E. Darvin, Laser scanning microscopy for control of skin decontamination efficacy from airborne particulates using highly absorbent textile nanofiber material in combination with PEG-12 dimethicone, Skin Res Technol, 26 (2020) 558-563, DOI: 10.1111/srt.12830
[3] J. Lademann, F. Knorr, A. Patzelt, M.C. Meinke, H. Richter, J. Krutmann, E. Ruhl, O. Doucet, Laser Scanning Microscopic Investigations of the Decontamination of Soot Nanoparticles from the Skin, Skin Pharmacol Physiol, 31 (2018) 87-94, https://doi.org/10.1159/000485900
[4] S.B. Lohan, S. Saeidpour, A. Solik, S. Schanzer, H. Richter, P. Dong, M.E. Darvin, R. Bodmeier, A. Patzelt, G. Zoubari, M. Unbehauen, R. Haag, J. Lademann, C. Teutloff, R. Bittl, M.C. Meinke, Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy, Eur J Pharm Biopharm, 116 (2017) 102-110, DOI: 10.1016/j.ejpb.2016.12.018